
1. Introduction
Surface particulate matter (PM2.5, i.e., particulate matter with a median diameter of 2.5 µm or less) is 
one of the main air pollutants that has a significant negative effect on human health. Exposure to PM2.5 
has been associated with many negative health outcomes including acute cardiovascular morbidity and 
mortality, respiratory mortality, hypertension, lung cancer, etc, and can also reduce people's life expec-
tancy (e.g., Brook et al., 2010; L. Miller & Xu, 2018; Pope et al., 2009). While the anthropogenic PM2.5 
concentrations are on the decline in the United States (U.S.) due to pollution controls implemented by 
the Environmental Protection Agency (EPA) and the daily average standard of 35 µg/m3 is never met un-
less the concentrations are high (100 s of µg/m3) due to smoke from fires or dust events. In parts of Asia, 
while de-seasonalized surface PM2.5 values are decreasing by about 2–8 µg/m3 per year, health impacts 
continue to be profound due to high pollution levels (Liang et al., 2020; Zhai et al., 2019). Shi et al. (2018) 
report that between 1999 and 2014, there was a net 38% increase in premature deaths in Asia due to PM2.5 
exposure.

While monitoring network in the U.S. is dense in urban regions, there are gaps in some rural areas, espe-
cially in the central plains and mid-west (www.airnow.gov, accessed November 17, 2020). Elsewhere in the 
world, the coverage is especially sparse. The network of ground monitors across the world though is spread-
ing with the use of low cost sensors (openaq.org, accessed November 17, 2020). Until the quality of the 
data gathered from these low cost sensors is assured, attempts to use satellite derived aerosol optical depth 
(AOD) to estimate surface PM2.5 that can alleviate the spatial coverage problem associated with ground 
measurements will continue (R. M. Hoff & Christopher 2009; van Donkelaar et al., 2010). Many methods 
have been developed to estimate surface PM2.5 from AOD (Chu et al.,  2016), such as the simple linear 
regression methods (Engel-Cox et al., 2004; Zhang et al. 2009), multivariants statistical methods (Gupta 
et al., 2009; Liu et al., 2005), mixed-effect model (Kloog et al., 2011), chemical transport model based meth-
od (van Donkalaar et al. 2006, 2010), geographical weighted regression (Hu, 2009), and machine learning 
methods (Hu et al., 2017; Xiao et al., 2018) to name a few.
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The most widely used satellite AOD products to estimate PM2.5 are from polar-orbiting satellite sensors 
Moderate Resolution Imaging Spectroradiometer (MODIS, Levy et al., 2007, 2013) on Terra and Aqua and 
Multiangle Imaging SpectroRadiometer (MISR, Kahn et al., 2009, 2010) on Terra. However, these sensors 
have been in orbit for around 20 years, and they have experienced degradations (Lyapustin et al., 2014). 
Visible Infrared Imaging Radiometer Suite (VIIRS) sensors with similar spectral bands onboard Suomi Na-
tional Polar-Orbiting Partnership (S-NPP) and National Oceanic and Atmospheric Administration (NOAA) 
-20 are the follow-on for the MODIS sensors (Cao et al., 2014). The VIIRS AOD product developed at NOAA 
has a spatial resolution of 750 m at nadir with a performance similar to that of MODIS (Laszlo & Liu, 2016; 
Zhang et al., 2016).

Polar-orbiting satellites can only observe a specific location once or twice per day and therefore AOD re-
trievals from these sensors only have one or two observations per day. AOD from geostationary satellites 
can have much higher temporal resolution than those from polar-orbiting satellites. For example, Geo-
stationary Operational Environmental Satellites (GOES) can provide full disk images every 15 or 10 min 
and can provide Continental United States (CONUS) images every 5 minutes (Schmit et al., 2005). The 
current GOES Advanced Baseline Imager (ABI) contains similar spectral bands as those from MODIS/
VIIRS and consequently is expected to retrieve AOD with similar accuracy as MODIS (Laszlo et al., 2008; 
Zhang et al., 2020). For example, bias corrected ABI AOD compares well against Aerosol Robotic Network 
(AERONET) AOD with zero mean bias and 0.05 Root mean square error (RMSE) over CONUS (Zhang 
et al, 2020). Using ABI AOD, PM2.5 can be estimated with higher temporal resolution to track regional/
local transport of aerosols.

NOAA National Environmental Satellite, Data, and Information Service (NESDIS) has been disseminating 
near-real-time (NRT) satellite aerosol related imagery over the United States to the air quality forecasters 
through Infusing satellite Data into Environmental Applications (IDEA; https://www.star.nesdis.noaa.gov/
smcd/spb/aq/), enhanced IDEA (eIDEA; https://www.star.nesdis.noaa.gov/smcd/spb/aq/eidea/) and Aer-
osolWatch (https://www.star.nesdis.noaa.gov/smcd/spb/aq/aerosolwatch/) websites (Al-Saadi et al., 2005; 
Hoff et  al.,  2009; Huff et  al.,  2015). The satellite imagery products on the websites include those from 
MODIS, GOES, and VIIRS. One of the products on the websites is the near-real-time estimates of daily 
PM2.5 from satellite AOD retrievals, both from MODIS and VIIRS. The algorithm used for PM2.5 estimates 
was developed by van Donkelaar et al. (2012). In the algorithm, AOD is converted to PM2.5 using a look-up-
table (LUT), which contains linear regression relationships, that is, slopes and offsets, between PM2.5 and 
AOD for each day of a year and for each pixel of 4 km resolution over the CONUS domain. The regression 
relations in LUT were derived from a multiyear chemical transport model and then corrected using match-
ups of surface PM2.5 and MODIS and MISR AOD data in the corresponding time period. After the AOD 
to PM2.5 conversion, the PM2.5 estimates are smoothed through spatial interpolation, and are also filtered 
using a spatial mask to remove areas with poor performance.

The van Donkelaar et al algorithm was developed as an application tool for surface PM2.5 using MODIS 
AOD for retrospective assessments of air quality. So are the PM2.5 algorithms developed using multivariate 
statistical regression models or those that rely on machine learning methods. Therefore, when these models 
are applied to monitor daily PM2.5, the regression parameters are likely to give inaccurate PM2.5 estimates 
because they assume that the PM2.5-AOD relationships are fixed for each day and each pixel. The PM2.5-
AOD relationships are functions of vertical profiles of aerosol, aerosol type, humidity, etc, and therefore 
can have substantial day-to-day variability (Gupta & Christopher, 2009). One solution to this problem is to 
use chemical transport model forecasts to obtain aerosol profiles, aerosol types, and other information to 
improve predictions. However, this approach is not viable because the goal is to derive surface PM2.5 purely 
based on observations. Another drawback of van Donkelaar et al algorithm is that it uses a spatial mask to 
filter out areas that have poor performance. The filters are applied to mask out AOD data in the western 
regions because MODIS AOD at the time when the van Donkelaar et al. (2012) algorithm was developed 
had large errors in that region. van Donkelaar et al. (2012) conducted extensive evaluation of MODIS AOD 
against AERONET and deemed certain areas of the US where MODIS AODs are consistently inaccurate and 
defined filters to mask those regions. A lot of such areas are located in the western US where smoke from 
wildfires is often dominant; smoke has become one of the main sources of the aerosols in the US in recent 
years as a result of reduction in industrial pollution and increase in wildfires (Dennison et al., 2014; Kaulfus 
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et al., 2017). Therefore, the removal of these smoke filled regions in the US reduces the applicability of the 
algorithm over CONUS.

To solve the problems in the algorithm, we modified our approach to replace van Donkelaar et al algorithm 
with geographically weighted regression (GWR) such that the PM2.5 and AOD regression relations are re-
vised dynamically in near-real-time using the matchup data of PM2.5 and AOD at EPA's AirNow stations. 
The revised relations are then applied to the satellite AOD retrievals to derive surface PM2.5. The algorithm 
is applied on VIIRS AOD to estimate the daily surface PM2.5 and on ABI AOD to estimate the hourly sur-
face PM2.5. The performance of the algorithm is evaluated for the CONUS region and for extreme smoke 
transport cases. Several researchers reported PM2.5 estimates using the GWR. For example, Hu et al. (2017) 
applied GWR in the southeastern US and obtained an R2 of 0.60; Ma et al. (2014) applied the algorithm 
in China with an R2 of 0.64. The purpose of this work is to generate near-real-time PM2.5 estimates from 
satellite AOD data, which will be used by the air quality community for monitoring and forecasting the 
day-to-day air quality. Unlike other approaches that uses many input parameters or complicated Chemical 
Transport Model predicted fields, this approach uses only AOD and surface PM2.5 as input in order for the 
algorithm to run fast. The requirements of the near-real-time system are different from the models devel-
oped for historical exposure assessment and health effect research. For near real time applications, it is often 
more important to get the PM2.5 estimates with good spatial coverage and low latency, even if there are 
small biases in estimated surface PM2.5 values. We demonstrate that this can be achieved with the proposed 
implementation of GWR algorithm to derive daily and hourly PM2.5 values over CONUS using VIIRS and 
ABI AODs as inputs, respectively.

2. Algorithm Description
As discussed in the introduction section, the van Donkelaar's algorithm (2012) uses AOD as an input var-
iable to derive surface PM2.5. In the algorithm, PM2.5 is assumed to have a linear relationship with AOD, 
that is,

  PM2.5 slope AOD offset (1)

The slopes and offsets are obtained from a LUT database of climatological values that are fixed for a given 
day of a year at a given 4 km pixel. The database was built through a multiyear study of the relationships 
using chemical transport model simulation and corrections using surface measurements.

In near-real-time, PM2.5 from surface measurements are available at EPA AirNow stations, both daily and 
hourly. Therefore, if the surface PM2.5 measurements are added as another input, the PM2.5 and AOD re-
lationship can be modified in near-real-time to improve the PM2.5 estimates from AOD.

In this work, GWR (e.g., Fotheringham et al., 2002; Hu et al., 2017; Ma et al., 2014) is applied to estimate 
PM2.5 from input parameters such as AOD and meteorological variables, etc. In GWR, regression models 
are generated locally using the matchup data close to the point of interest. Weights are assigned to the 
matchup points when deriving the parameters in the regression model such that points closer have higher 
weights than those farther away.

The model equation is defined as following:

 0 1PM2.5 AODij ij ija a (2)

In Equation 2, i, j represent the time and location. In this model, PM2.5 is assumed to be a linear function 
of AOD. As shown, the coefficients (a0ij, a1ij) are different for different location and time. For daily PM2.5, 
the coefficients are derived from the daily matchup data set of PM2.5 and AOD through GWR algorithm. To 
matchup satellite AOD at a site, AOD pixels within 27.5 km PM2.5 site are averaged; the choice of 27.5 km 
radius is the standard approach used widely in the validation of satellite AODs (e.g., Levy et al. 2010; Huang 
et al., 2016). Although the Equation 2 and Equation 1 look the same, the coefficients are derived differently. 
The coefficients in Equation 2 are derived dynamically at the time of the PM2.5 estimates, while those in 
Equation 1 are climatological values and stored in a LUT.
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There are different ways to assign the weight in the regression. In this approach, a bisquare function is used 
for the weight:

          


22

1 if

0 otherwise

d d hw h (3)

In Equation 3, d is the distance between the point of interest and the point with matchup data and h is the 
maximum distance of the closest N points to the point of interest. The number N here is called bandwidth 
which are the number of points used for the regression. The bandwidth can be assigned with fixed value or 
be assigned adaptively using some algorithms. The value h is not a fixed value throughout the space if the 
bandwidth is fixed. It depends on the density of the matchup points. In areas with high data density, h is 
small, and vice versa.

The ten-fold cross-validation method is used to evaluate the GWR algorithm (Hasti et  al.,  2017). With 
this method, the PM2.5 stations are randomly divided into ten equal-sized subsets. The algorithm runs 10 
rounds with one set selected as the validation set and the other nine sets as the training set. The PM2.5 at 
the validation sets are estimated using the algorithm assuming surface PM2.5 are unknown at those stations 
and are then compared against surface measurements at the corresponding stations.

3. Data
3.1. Surface PM2.5

Daily and hourly surface PM2.5 were obtained from EPA AirNow ground measurements over CONUS and 
Canada with total 986 sites (https://www.airnowtech.org/, last accessed 3/6/2020). Of these sites, 870 sites 
have both daily and hourly data, the rest of the sites have daily data only. The data since 2012 are available 
on the AirNow-Tech site. In this work, daily PM2.5 in 2015–2017 are used and hourly PM2.5 in August–De-
cember 2018 are used. PM2.5 are measured using Gravimetric or tapered element oscillating microbalance 
instruments (van Donkelaar et al., 2012). Hourly surface PM2.5 in Taiwan were obtained from Environmen-
tal Protection Administration Executive Yuan R.O.C. (Taiwan) website https://taqm.epa.gov.tw/pm25/en/
HourlyData.aspx (last accessed 11/6/2019) with 77 sites.

3.2. VIIRS AOD

The S-NPP VIIRS AOD used for the years 2015–2017 is based on the algorithm by Laszlo and Liu (2016). 
This is a new algorithm that derives AOD over both dark surfaces as well as bright surfaces. This is an en-
hancement over the previous version that provided AOD only over dark targets (Huang et al., 2016; Jackson 
et al., 2013; Liu et al., 2014). The retrieval algorithm over land uses five bands, that is, 0.41, 0.44, 0.48, 0.67 
and 2.2 µm, to retrieve AOD, surface reflectance and aerosol models. The surface reflectance relationships 
between the bands are assumed to be known, either by parameterization over dark surfaces or by clima-
tological database over bright surfaces (Zhang et  al.,  2016). The algorithm then inverts the reflectances 
using LUTs for four different aerosol models to obtain AODs for each model. The four aerosol models used 
are dust, smoke, urban and generic model, which are adopted from MODIS dark target algorithm (Levy 
et al., 2013). These aerosol models have different physical and optical properties, such as size distribution, 
complex refractive indices, shapes, etc. Residues are calculated using the rest of the bands and the aerosol 
model that gives the lowest residue is selected and AOD for that model is reported. The exception is that 
dust aerosol model is assumed over North Africa and Arabian Peninsula. VIIRS AOD retrievals are classi-
fied into three qualities, that is, high, medium, and low. The quality of a pixel is determined by the condition 
of the pixel, for example adjacency to cloud/snow, retrieval residuals, etc. High quality AOD retrievals are 
advised to be used in the quantitative research or analysis.

The validation results of the retrieved VIIRS AOD at 550 nm over land against AERONET AOD is shown 
in Table 1 over different regions around the world. Over different regions, the performances of VIIRS AOD 
are different. For example, for AOD from S-NPP over CONUS, which is used in this work, the mean biases 
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are 0.01, −0.01, 0.07 for the categories of AOD < 0.1, 0.1 ≤ AOD ≤ 0.8, and AOD > 0.8, respectively, and 
the standard deviations for the corresponding categories are 0.048, 0.089, and 0.552. The increased bias 
and standard deviation with increasing AOD is due to the higher uncertainty caused by the aerosol model 
uncertainty in the retrieval algorithm when AOD is higher. The regional differences in performance can 
be traced to the differences in the surface reflectance properties and aerosol model properties in different 
regions and how well the surface reflectance relationship and aerosol model represent the reality.

3.3. ABI AOD

The recently launched geostationary satellites GOES-16 and GOES-17 have similar bands as MODIS/VIIRS 
and therefore are expected to retrieve AOD with similar accuracy as MODIS/VIIRS but with much higher 
temporal resolution. GOES-16 is located at 75.2°W above the equator, that is, GOES-East position, and 
GOES-17 is located at 137.2°W, that is, GOES-West position. Both GOES satellites retrieve AOD at 2 km 
spatial resolution, and at 15 min for full disk and 5 min for CONUS temporal resolution. In 2019, NOAA de-
cided to change the satellite operations to be consistent with international geostationary satellite constella-
tion operations and switched the GOES-16 and GOES-17 scan patterns so full disk is covered every 10 min.

The current version of the ABI AOD uses a retrieval algorithm similar to the MODIS dark target algorithm 
and VIIRS AOD retrieval (GOES-R ABI ATBD for Suspended Matter/Aerosol Optical Depth and Aerosol 
Size Parameter, 2018; Kondragunta et al., 2020). The over land AOD retrieval uses three ABI channels, that 
is, 0.47, 0.64, and 2.2 µm. The algorithm assumes that there are linear relationship between the surface 
reflectance of 0.47 and 2.2 µm band, and between 0.64 and 2.2 µm band. The coefficients of the relation-
ships are functions of Normalized Difference Vegetation Index (between 0.64 and 0.86 µm channels) and 
solar zenith angle, and they were obtained through training using the ABI and AERONET matchup data 
(GOES-R ABI AOD ATBD, 2018). AOD retrieval procedure and aerosol models used is similar to that for 
VIIRS described in Section 3.2. The AOD retrieval range is (−0.05,5) with retrievals greater than 5 marked 
as out of range. Three qualities of AOD are defined, that is, high, medium, and low, determined by the prop-
erties of the pixels, such as adjacency to cloud/snow, standard deviation of 3 × 3 box containing the pixel, 
retrieval residual, etc.

Diurnal variation of AOD bias were found due to the errors in surface reflectance relationships. Therefore, 
a bias correction algorithm was applied to remove the biases before using them to estimate PM2.5 (Zhang 
et al., 2020). In the bias correction algorithm, the AOD bias is obtained through analysis of time series of 
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Region & AOD ranges

S-NPP NOAA-20

Mean bias Standard deviation Mean bias Standard deviation

United States AOD < 0.1 0.011 0.048 0.007 0.046

0.1 ≤ AOD ≤ 0.8 −0.008 0.089 −0.017 0.088

AOD > 0.8 0.068 0.552 0.154 0.558

Western Europe AOD < 0.1 −0.021 0.031 −0.021 0.029

0.1 ≤ AOD ≤ 0.8 −0.039 0.057 −0.042 0.052

AOD > 0.8 −0.288 0.415 −0.379 0.448

India AOD < 0.1 0.0002 0.052 −0.023 0.093

0.1 ≤ AOD ≤ 0.8 −0.107 0.115 −0.109 0.111

AOD > 0.8 −0.221 0.245 −0.199 0.219

China AOD < 0.1 0.004 0.045 0.004 0.048

0.1 ≤ AOD ≤ 0.8 0.017 0.124 0.002 0.126

AOD > 0.8 −0.002 0.319 0.014 0.307

Abbreviation: AOD, aerosol optical depth.

Table 1 
Validation of High Quality VIIRS AOD at 550 nm Over Land Against AERONET AOD Over Different Regions
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past 30 days of AOD retrievals. The lowest AOD at each pixel and at each time step is obtained and the AOD 
bias for that time step is estimated by subtracting the background AOD from the lowest AOD. The bias at 
each time step is then subtracted from the original ABI AOD to obtain the bias corrected AOD. The bias 
corrected ABI AOD compares well against AERONET AOD with 0 mean bias and 0.05 RMSE over CONUS, 
and the medium quality AOD performs as good as the high quality AOD. In this work, the bias corrected 
ABI AOD are used. The time period of the data used in this study is August 2018–December 2018.

Although GOES-16 images cover the whole area of CONUS, high quality and medium quality (top two 
qualities) AOD do not cover the western and northwestern part of the CONUS due to the restrictions of the 
algorithm on view zenith angle, that is, those areas have high view zenith angle (above 60°) and therefore 
AOD retrieval accuracies are expected to be low, due to the violation of the plane parallel assumption of 
the atmosphere in the radiative transfer model (e.g., Frouin et al, 2019). The areas that are not covered by 
top two qualities AOD include most or all the areas of California, Nevada, Oregon, Washington, Idaho, 
and Montana. Most of the extreme fire events that release smoke into the atmosphere occur in those areas. 
Although smoke is transported downwind long distances, its concentrations are high (can get upwards of 
1,000 μg/m3) near the source regions; contrary to near source regions, when smoke is transported it is usu-
ally aloft and often does not impact surface air quality in the downwind regions. Because GOES-17 AOD 
product is operational, it covers California, Oregon, and Washington with better viewing angles than GOES-
16 from its 75.2° longitude.

3.4. AHI AOD

Advanced Himawari Imager (AHI) is on board geostationary satellite Himawari-8, which is located at 
140.7°E and observes eastern Asia, Australia and Pacific Ocean. It has 16 spectral bands ranging from vis-
ible to infrared and the bands are similar to those of MODIS, VIIRS, and GOES-R (Bessho et al., 2016; Yu 
& Wu, 2016). The AOD retrieval algorithm used in this work was developed at NOAA and is the same as 
current operational GOES-16 AOD retrieval algorithm (GOES-R ABI ATBD for Suspended Matter/Aerosol 
Optical Depth and Aerosol Size Parameter, 2018). AHI AOD retrievals have spatial resolution of 2 km and 
temporal resolution of 10 min. Different retrieval algorithms are used over ocean and over land surfaces. 
Because of the band similarity with MODIS and VIIRS, the over ocean algorithm is adopted from VIIRS 
(Jackson et al., 2013) and the over land algorithm uses MODIS dark-target algorithm (Laszlo et al., 2008; 
Levy et al., 2007). The AOD retrievals compare well against those from AERONET and have similar perfor-
mance as MODIS and VIIRS AOD retrievals. For example, as seen in Section 4.4 Figure 6, AHI AOD has 
a correlation of about 0.9, mean bias −0.02 and RMSE 0.10 over Taiwan in 2017 compared against AER-
ONET AOD. For this study, to reduce processing time, the AOD was run over Taiwan region and retrieved 
at 30 min intervals. The time period of the data is January–December 2017. The AHI AOD retrievals were 
used for hourly PM2.5 estimates over Taiwan region.

4. Results
This section shows the results of PM2.5 estimates from the GWR model for several case studies and statistics 
of the algorithm performance for the whole CONUS region. Daily PM2.5 values are estimated from VIIRS 
AOD for the year 2015–2017 and hourly PM2.5 are estimated from ABI AOD over CONUS for the time peri-
od of August 6–December 31, 2018. In the case study analysis of smoke transport case on September 4, 2017, 
we compare the current operational product with the one generated using the GWR model.

4.1. Case Study (September 4, 2017)

Smoke from wildfires in the western US and the western Canada is a major source of aerosols over CONUS 
(e.g., Le et al., 2014; Miller et al., 2011; Sapkota et al., 2005). Smoke from fires is becoming increasingly a 
problem for people living in the exo-urban and suburban regions in close proximity to the forests. The com-
munities are not only exposed to potential loss of property due to fire damage but also risk inhaling highly 
polluted air. In this context, providing timely information on surface PM2.5 values for these smoke events 
is extremely important. Therefore, we focused on one case study as an example to demonstrate the limita-
tions of current operational algorithm and potential improvements from the GWR algorithm. As shown in 
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Figure 1a, in which the VIIRS AOD image is overlaid on top of true color Red Green Blue (RGB) image for 
September 4, 2017, smoke originated from wildfires in the western US and Canada covering many areas in 
the northern part of CONUS, where high AOD retrievals with a range of 1.0–5.0 AOD in the plume region 
were observed. True color RGB images are generated by combining measurements made at Red (670 nm), 
Green (550 nm), and Blue (440 nm) channels that provide visible representation of the scene such that 
clouds appear white, water appears blue, vegetation appears green, dust appears brown, smoke appears 
gray, and haze appears white (Hillger et al., 2015). In the AOD image, there are areas without AOD retrievals 
because pixels covered with snow or clouds are screened out. Pixels close to clouds and snows are assigned 
lower quality and therefore also are not shown in the figure. Figure 1b shows daily PM2.5 estimated from 
van Donkelaar's algorithm. Because of the smoothing procedure in the algorithm, the estimated PM2.5 
field looks smoother and more homogeneous than the AOD field, that is, many cloud covered areas with 
no AOD retrievals are filled in with PM2.5 estimates. It should also be noted that while AOD is at a ∼750 m 
resolution, the PM2.5 retrievals are at 4 km resolution because the regression parameters in the LUT are for 
each 4 km grid. Due to which, the high resolution VIIRS AOD pixels are aggregated to a 4 km grid before 
running the PM2.5 algorithm. The spatial filter used in the algorithm to remove areas with poor perfor-
mance introduces large areas of missing PM2.5 estimates in the western states, for example, California, 
Nevada, Oregon, New Mexico, etc, even though AOD retrievals are available in those regions (see Section 1). 
The closed circles in the the PM2.5 plot are surface measurements of daily PM2.5 at EPA AirNow stations. 
Large discrepancy between the surface measurements and estimates from AOD is found over the midwest 
region, for example, areas covering Iowa, Illinois, Wisconsin, where PM2.5 estimates from AOD are as high 
as 100 μg/m3, but the surface PM2.5 measurements are below 20 μg/m3. This demonstrates the problem 
with the algorithm that uses climatological regression parameters for AOD-PM2.5 relationship. AOD rep-
resents the total column of aerosols in the atmosphere, while PM2.5 is the quantity close to ground. Hence, 
the relationship between the two quantities depends on the vertical profile of the aerosol layers. The low 
surface PM2.5 at stations with high satellite AOD indicates that the aerosol layer is aloft and not in the 
boundary layer, and therefore does not degrade the air quality at the surface. Independent validation of 
VIIRS AODs have been shown to have minimal cloud contamination in general due to excessive screening 
(Huang et al., 2016; Liu et al., 2014)

Figure 1c shows PM2.5 estimates from the GWR algorithm. No spatial smoothing and filtering are applied 
here, and therefore, the PM2.5 field coverage is the same as that of AOD retrievals. Using this method, the 
areas that have overestimated PM2.5 from AOD in Figure 1b now have PM2.5 estimates much closer to the 
ground measurements. Van Donkelaar's algorithm was developed using MISR and MODIS dark target AOD 
(collection 5) many years ago. Many areas over western US are bright surfaces and therefore MODIS dark 
target AOD does not have retrievals. MODIS dark target AOD (collection 5) also does not perform well over 
western US dark surfaces. That is one reason that van Donkelaar's algorithm uses spatial filter to remove 
many areas over western US. As mentioned in the previous section, VIIRS AOD can retrieve over bright 
surfaces and have improved retrieval performance over the western US. Therefore, the GWR algorithm does 
not have to use a spatial filter to remove those areas and it can generate better coverage than van Donke-
laar's algorithm.

Figure 2 shows the slope and intercept for climatology from van Donkelaar's algorithm and those from 
GWR for September 4, 2017. In the Climatology maps, the slopes vary in different regions, that is, some 
place can have higher than 150 and some places can be close to zero. On the other hand, the GWR slopes are 
positive and high in regions of high AODs when smoke is close to the surface near source region (i.e., loca-
tion of fires) and close to zero in areas where AODs are at near background levels (∼0.1) or high but smoke 
is detached from the surface. Slopes can even be negative when AOD and PM2.5 are negatively correlated. 
This happens for situations when AODs are high for a smoke plume that is detached from the surface and 
PM2.5 values at the surface are small or when AODs and PM2.5 values are very low with very little dynamic 
range to establish a regression. The GWR intercepts have larger variations compared to the climatological 
intercepts, from −20 to 50. The difference in performance between the two algorithms is The differences 
between the two are obvious. For example, the slopes from GWR in most of the eastern US are close to 
zero, while those from climatology are greater than 50; the intercepts are mostly greater than zero and have 
higher absolute values than those from climatology, etc. The differences between the slopes and intercepts 
can explain the differences in the PM2.5 estimates over midwest region: the large slope from climatology 
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Figure 1. Smoke transport over CONUS on September 4, 2017. (a) VIIRS AOD overlaid on VIIRS RGB image; (b) 
PM2.5 estimates using current operational algorithm based on van Donkelaar et al. (2012); (c) PM2.5 estimates from the 
GWR algorithm. Closed circles in the plots of (b)–(c) are ground stations measurements, with the same color scales as 
the PM2.5 estimates from VIIRS AOD. The unit for PM2.5 is µg/m3. AOD, aerosol optical depth; CONUS, Continental 
United States; GWR, geographically weighted regression; RGB, Red Green Blue; Visible Infrared Imaging Radiometer 
Suite.
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together with high AOD contributed to the high PM2.5 estimates in the region, while the small slope from 
GWR generated low PM2.5 estimates, which are closer to the surface measurements.

The GWR technique is widely used but none of the studies have reported negative slopes are unrealistically 
high intercepts. In the NOAA implementation of the GWR for PM2.5 estimation, estimates of PM2.5 from a 
negative slope for the regression equation will be flagged and recommended not to be used.

4.2. Daily PM2.5 Estimates From VIIRS AOD Over CONUS

Daily PM2.5 estimates from AOD are performed for the CONUS area using 3 years of data from 2015 to 
2017. Figure  3 shows the scatter plots between the estimated PM2.5 and the ground measurements at 
AirNow stations using the GWR algorithm and the van Donkelaar's algorithm. As described in Section 2 
ten-fold cross validation is used to validate the algorithm. In each fold, the entire time series of the left out 
sites are estimated.

As expected, the PM2.5 estimates from the GWR algorithm compare better against surface measurements 
than those from van Donkelaar's algorithm. Using the GWR algorithm, the mean bias improves from 1.87 
to 0.09 µg/m3, RMSE improves from 12.60 to 5.66 µg/m3 and R2 improves from 0.26 to 0.59. The PM2.5 
estimates from GWR algorithm have a slope close to 0.87 versus ground measurements, while those from 
van Donkelaar's algorithm has a slope of 1.98. The low R2 of van Donkelaar's algorithm indicates the poor 
performance of using the climatological relationship between PM2.5 and AOD for PM2.5 estimates and the 
patterns derived from past data are not applicable for the future data.

Different bandwidths are tested to investigate the influence of the bandwidth selection. Bandwidth is the 
number of the nearest neighbors that are included in the regression for a point. Figure 4 shows the bias and 
RMSE versus bandwidth for different air quality (AQ) categories, which are defined by United States Envi-
ronmental Protection Agency (USEPA) based on the surface PM2.5 values (Table 2). Several different band-
widths are selected: 20, 40, 80, and a dynamically selected one using corrected Akaike Information Criterion 
(AICc; Fotheringham et al., 2002; Hurvich et al., 1998; Hu et al. 2017). Six AQ qualities associated with 
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Figure 2. Comparisons of slope and intercept between climatology and GWR. GWR, geographically weighted regression.
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different ranges of PM2.5 values are defined as Good (0–12 µg/m3), Moderate (12.1–35.4 µg/m3), Unhealthy 
for Sensitive Group (35.5–55.4  µg/m3), Unhealthy (55.5–150.4  µg/m3), Very Unhealthy (150.5–250.4  µg/
m3), and Hazardous (>250 µg/m3). The PM2.5 estimates bias decreases with increasing PM2.5, and RMSE 
increases with increasing PM2.5. The biases are gradually decreasing from close to zero to about −12 to 
−20 µg/m3 in four categories from “Good” to “Unhealthy,” but the bias has a high negative value of about 
−50 to −70 µg/m3 for the “Very Unhealthy” category. The small sample size in the “Very Unhealthy” cat-
egory may be the reason of the high negative bias, because there are not enough data to train the model. 
With different values of bandwidth in the five categories, the bias and RMSE do show some differences and 
the small bandwidth of 20 performs the best. This is because the PM2.5 values correlate better for stations 
that are closest to each other; correlation usually falls off beyond 100 km. For the applications involving 
warnings of poor air quality, it is more important to get the AQI category correct than the absolute concen-
tration values. We find that the accuracy range of predicting the right AQI category is 94%, 56%, 35%, 50%, 
and 50% for “Good,” “Moderate,” “Unhealthy for Sensitive Groups,” “Unhealthy,” and “Very Unhealthy,” 
respectively. The accuracy estimates for “Hazardous” category are not meaningful due to small sample size.

Figure 5 shows the seasonal average of the PM2.5 estimations from VIIRS AOD over CONUS for the period 
of study 2015–2017. Of all the seasons, spring has the lowest PM2.5, with most of the regions below 10 µg/
m3. High PM2.5 regions are found over western CONUS in summer and fall, which are caused by the smoke 
generated from fires in western US and western Canada. The heavy smoke over western US and western 
Canada has made a significant change in the pattern of PM2.5 over CONUS in the recent years. In the last 
20 years, PM2.5 values due to anthropogenic pollution has improved over the U.S. due to regulations with a 
clear decreasing trend between 1990 and 2010 (Y. Zhang et al., 2018); However, smoke from fires dominates 
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Figure 3. Scatter plots for the PM2.5 estimates from AOD versus PM2.5 from AirNow: (a) GWR algorithm; (b) van 
Donkelaar's algorithm with smoothing and spatial filtering. AOD, aerosol optical depth; GWR, geographically weighted 
regression.

Figure 4. Bias and RMSE for different AQI categories and for different bandwidth over CONUS in 2015–2017. 
Statistics of “Hazardous” category is not shown due to statistically insignificant sample size. AQI, air quality index; 
CONUS, Continental United States.
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the pacific northwest region leading to higher PM2.5 concentrations dur-
ing the fire season in the summer. The RMSE of satellite derived PM2.5 
values does not change much between the seasons though it is the low-
est in the spring; RMSEs are 5.39, 3.18, 6.71, and 6.07 for winter, spring, 
summer, and fall, respectively. AOD, aerosol optical depth; CONUS, Con-
tinental United States; GWR, geographically weighted regression; Visible 
Infrared Imaging Radiometer Suite.

4.3. Hourly PM2.5 Estimates From ABI AOD

The bias corrected top two qualities GOES-16 ABI AODs are used in this 
work for August 6, 2018–December 31, 2018. To get the hourly PM2.5 es-
timates, 5 min GOES-16 AODs are first averaged into hourly values over 
CONUS. The GWR algorithm is then applied using the hourly AOD to 
estimate surface PM2.5 measurements. Figure 6 shows the evaluation of 
surface PM2.5 derived from GWR algorithm and also shows the com-
parison of current van Donkelaar algorithm performance for reference. 
The results show similar conclusion as those of the daily PM2.5 estimates 

from VIIRS: the PM2.5 estimates from AOD using dynamically modified PM2.5-AOD relationship perform 
much better than those using climatological relations. The bias improves from 1.02  to 0.04 µg/m3, RMSE 
improves from 11.02 to 4.53 µg/m3, and R2 improves from 0.09 to 0.44.

The air quality community has been working with the EPA's daily average PM2.5 standard (35 µg/m3) and 
using VIIRS or MODIS AOD to derive PM2.5 from satellites. NOAA began running van Donkelaar algo-
rithm on MODIS data in 2012 to support EPA and its stakeholders. At that time, van Donkelaar algorithm 
was the only one available that we could implement operationally. The field has evolved with many new 
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AQI category
AQI 

value

24-h average PM2.5 
concentration 

(µg/m3)

Good 0–50 0–12.0

Moderate 51–100 12.1–35.4

Unhealthy for Sensitive Groups (USG) 101–150 35.5–55.4

Unhealthy 151–200 55.5–150.4

Very Unhealthy 201–300 150.5–250.4

Hazardous 301–500 ≥250.5

Abbreviation: AQI, air quality index.

Table 2 
Air Quality Categories Defined by EPA of the United States (https://www.
epa.gov/sites/production/files/2016-04/documents/2012_aqi_factsheet.
pdf, Accessed February 5, 2019). AQI Stands for Air Quality index

Figure 5. Seasonal average of PM2.5 estimation from VIIRS AOD using GWR algorithm over CONUS for 2015–2017: 
(a) winter (December–February); (b) spring (March–May); (c) summer (June–August); (d) fall (September–November). 
AOD, aerosol optical depth; CONUS, Continental United States; GWR, geographically weighted regression; Visible 
Infrared Imaging Radiometer Suite.



Earth and Space Science

algorithms but they all still rely on once a day observation of AOD from satellites. Studies have shown that 
exposure to PM2.5, even for 2 hours can increase the cardiovascular disease risk by 40% (Link et al., 2013). 
Given the significance of having PM2.5 information on a subdaily time scale, the estimates from ABI AOD 
are of significance. The hourly PM2.5 estimates from ABI AOD can capture the subdaily variation, the im-
portance of which can be seen in the examples in the following subsection.

4.4. Hourly PM2.5 Estimates From AHI AOD Over Taiwan

As mentioned in Section 3.4, the geostationary satellite sensor AHI onboard Himawari 8 has similar bands 
as MODIS/VIIRS and therefore is expected to retrieve AOD with similar accuracy as MODIS and VIIRS but 
with much higher temporal resolution. Himawari is located at 140.7°E above equator, which observes east-
ern Asia and Australia. AHI AODs were retrieved at temporal resolution of 30 min at NOAA using a retriev-
al algorithm similar to the MODIS dark target algorithm that was adapted for GOES-R, but with the surface 
reflectance relation tuned for AHI bands and geographical regions covering Asia. The AHI AOD with top 
two qualities (high quality and medium quality) were averaged temporally into hourly and matched up with 
surface PM2.5 data. The top two qualities of AHI AOD were used because they have very little degradation 
in accuracy from high quality AOD through comparison against AERONET AOD, but the top two qualities 
AOD have much larger coverage than the high quality AOD. Figure 7 shows the scatter plots of the AHI 
AOD versus AERONET AOD in 2017 over Taiwan. The total number of matchups for the top two qualities 
AOD with PM2.5 is about eight times those for the high quality AOD and the retrieval accuracy is very high 
with mean bias of −0.02 and root mean square error of 0.1.

The Taiwan Environmental Protection Administration monitors PM2.5 and PM10 and other pollutants. 
There are two main sources of the pollutants: one is locally generated and the other is transported from 
mainland China (Cheng et al., 2012; Cheng and Hsu, 2019; Chuang et al., 2018). To improve the air quality, 
the Taiwan government has applied policies to control the emission (Tsai, 2016). On the other hand, PM2.5 
over mainland China is also in a downward trend in recent years due to emission control of Chinese govern-
ments (Zhai et al., 2019). As a result, the PM2.5 concentration in Taiwan is also found to be in a downward 
trend (Cheng and Hsu, 2019).

Figure 8(a) shows the results of the hourly PM2.5 estimates from AHI AOD compared against the surface 
PM2.5 measurements at 77 sites over Taiwan. The R2 between the estimated and measurements is 0.53, the 
mean bias is 0.31 µg/m3, and the RMSE is 10.66 µg/m3. As a comparison, the PM2.5 estimates from the line-
ar relation is shown in Figure 8b, whose R2 is only 0.25 and RMSE is 15.37 µg/m3. The simple linear regres-
sion was derived from the PM2.5 and AOD matchup data in this area, whose slope is 79.92 and intercept is 
0.38. As expected, similar to PM2.5 estimates using VIIRS AOD and ABI AOD over CONUS, the results from 
GWR algorithm show better accuracy than those from the simple linear regression in terms of R2, bias, and 
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Figure 6. Hourly PM2.5 estimates: (a) from ABI AOD using GWR algorithm; (b) from ABI AOD using the 
climatological relations. ABI, Advanced Baseline Imager; AOD, aerosol optical depth; GWR, geographically weighted 
regression.
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RMSE. Similar to the results in CONUS, the estimates of PM2.5 also have negative bias in the high PM2.5 
category, that is, “Unhealthy” category.

Figure 9 shows the diurnal variation of estimated PM2.5 over Taiwan for different seasons in 2017. There 
are small diurnal changes, about 3 µg/m3 in all the seasons. The peaks occur in the morning at about 1–2 
UTC (9:00–10:00 a.m. local time), which may correspond to the rush hour traffic. There is also a second 
peak in the afternoon in spring at six UTC (2:00 p.m. local time) and in summer at 5 UTC (1:00 p.m. local 
time). The seasonal differences are larger. Winter and spring have higher PM2.5 than summer and fall. Win-
ter and spring have similar magnitude of about 24 µg/m3. Fall has about 20 µg/m3 and summer has about 
12 µg/m3. One reason that causes the high PM2.5 in winter and spring is the transport of pollution from 
mainland China as the winds usually blow from mainland China to Taiwan in those seasons (Cheng et al., 
2019; Chuang et al., 2018; Wang et al., 2016). We conducted some back trajectory analysis of high PM2.5 
events to confirm the transport of aerosols from mainland China to Taiwan during the spring season. The 
planetary boundary layer height also tends to be low in low temperature conditions in winter and spring, 
and therefore increases PM2.5. Similar seasonal patterns of PM2.5 variations in Taiwan were observed by 
other researchers (Chang et al., 2010; Jung et al., 2018). For example, Chang et al. (2010) observed the same 
seasonal pattern of PM2.5 in Taipei, and they ascribe the increase of PM2.5 in spring and winter to the long-
range transport from mainland China and poor ventilation of local emission in these seasons.
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Figure 7. Scatter plot of AHI AOD versus AERONET AOD over Taiwan in 2017 (a) high quality AHI AOD versus 
AERONET AOD; (b) top two quality AHI AOD versus AERONET AOD. AERONET, Aerosol Robotic Network; AHI, 
Advanced Himawari Imager; AOD, aerosol optical depth.

Figure 8. Hourly PM2.5 estimates from AHI AOD over Taiwan for January–December 2017: (a) the estimate using 
GWR; (b) the estimate using a single linear regression relation, which is derived from the matchup of PM2.5 and AOD 
in this area. AHI, Advanced Himawari Imager; AOD, aerosol optical depth; GWR, geographically weighted regression.
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4.5. Error Analysis

As shown in Figure 3, even with the GWR algorithm, the daily PM2.5 es-
timates from VIIRS AOD can have a large negative bias and large RMSE 
for the air quality category “Very Unhealthy,” that is, PM2.5 range of 
150.5–250.4 μg/m3. To find the reasons for the large errors in this catego-
ry, we investigated a couple of heavy smoke cases. The first case is for an 
AirNow site at Seeley Lake in Montana with ID number 300630038. This 
site experienced a heavy smoke period from September 1 to September 
6, 2017, when the daily PM2.5 measurements at this site were all “Very 
Unhealthy,” that is, in the range of 150.5 –250.4 µg/m3. The transported 
smoke from fires in Canada and northwestern US impacted regional air 
quality with very high surface PM2.5 concentrations in the mid-western 
states of the US.

Figure 10 shows the time series of the observed hourly PM2.5, observed 
daily average PM2.5 and daily PM2.5 estimates from VIIRS AOD at this 
site. Although the PM2.5 estimates from VIIRS AOD is for daily, the sat-
ellite overpass at a location is only once or twice per day and is at about 
1:30 p.m. local time. It should be noted that VIIRS, due to its wider swath, 
may observe the same location from two different orbits and thus pro-
vide two observations per day. Therefore, the PM2.5 estimates from VIIRS 
AOD are plotted at the time close to the satellite overpass instead of the 
whole day. During these days at this site, the diurnal variation of PM2.5 
is very high. For example, on September 1, 2017, the daily PM2.5 is about 
250 μg/m3, but the highest hourly PM2.5 is close to 1,000 μg/m3 at 7:00 

a.m. in the morning, and the lowest is less than 50 μg/m3. The hourly PM2.5 is high during the night and 
early morning, but drops rapidly in the morning hours from 8:00 a.m. to 10:00 a.m.; other days show a 
similar pattern. This pattern may be caused by the diurnal variations of the planetary boundary layer (PBL) 
height and the diurnal variations of wind direction. The PBL height changes diurnally due to the surface 
temperature and other meteorological conditions. It is usually much higher during day time than the night 
time due to strong convection in the day time, especially when surface temperature is high (Stull, 1988). 
Increased PBL height lowers surface PM2.5 because it can dilute the particle density within PBL (e.g., Y. Liu 
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Figure 9. Diurnal variation of estimated PM2.5 variation over Taiwan for 
different seasons in 2017.

Figure 10. Time series of hourly PM2.5, daily PM2.5 and daily PM2.5 estimates from VIIRS AOD at Seeley Lake, Montana. AOD, aerosol optical depth; VIIRS, 
Visible Infrared Imaging Radiometer Suite.
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et al. 2005). The change in wind direction may also be a factor of the change for hourly surface PM2.5 at the 
site. If the wind was in the direction from the source toward the monitoring site, the surface PM2.5 would 
be high, otherwise, it would be low.

For these days, the PM2.5 estimates from VIIRS AOD is much closer to the hourly PM2.5 at the time of the 
satellite overpass than the daily PM2.5. Therefore, the large bias of daily PM2.5 estimates from VIIRS AOD 
is because that VIIRS AOD have observations at only once or twice during a day and are not representative 
for the whole day, especially during the time period when the diurnal variation of PM2.5 is huge. For the 
extreme event with high diurnal variation in PM2.5, it is more appropriate to use VIIRS AOD to estimate 
hourly PM2.5 close to the time of the satellite overpass than to estimate daily PM2.5.

Figure 11 shows another case where Sisters site in Oregon is covered by a smoke plume on August 25, 2018. 
Many of the smoke pixels close to the city have no retrieval, which may be due to false identification of the 
pixels as cloud or the retrievals are out of range (AODs > 5.0). Because the spatial scale of the smoke plume 
is small, the 27.5 km circle area used for AOD average also include a lot of pixels with low AOD, that is, less 
than 0.2. Due to these two reasons, that is, missing high AOD pixels and spatial sampling, the average AOD 
for the matchup with the PM2.5 site at Sisters site is low and therefore can introduce large negative bias for 
PM2.5 estimates at this site.

From the analysis of these two cases, the large negative biases in the cases of high PM2.5 are caused by three 
main reasons: temporal sampling error, spatial sampling error, and missing AOD retrievals associated with 
heavy smoke. These issues are related to AOD input to the GWR algorithm and not a weakness of the algo-
rithm. One of the sources of the errors is temporal sampling which can be addressed by using high temporal 
resolution AODs from a geostationary satellites and deriving hourly PM2.5; daily PM2.5 can be estimated 
from hourly PM2.5 with the realization that daily PM2.5 may not adequately represent diurnal variation of 
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Figure 11. Daily PM2.5 at AirNow sites (dots) and VIIRS AOD overlaid on RGB image on August 25, 2017 in Oregon. 
The black circle has a radius of 27.5 km centered at Sisters, which has a daily PM2.5 of 100 μg/m3. AOD, aerosol optical 
depth; RGB, Red Green Blue; VIIRS, Visible Infrared Imaging Radiometer Suite.
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PM2.5 when it is significant, as was observed for Seeley Lake in Montana 
for a transported smoke event.

Unfortunately, Seeley Lake case was not covered by GOES-16 ABI AOD 
due to view angle limitation of a geostationary satellite observation. To 
demonstrate the benefit of high temporal resolution of GOES-16 ABI 
AOD, Figure  12 shows another smoke transport case that was covered 
by both VIIRS and ABI on July 6, 2019: The ground station near Fargo 
in North Dakota (ND) observed near zero PM2.5 before 1900 UTC, and 
it had an abrupt increase in PM2.5 at 1900 UTC and the PM2.5 rapidly 
increased to 150 µg/m3. The increase in PM2.5 was because of the smoke 
from the west mixing into the boundary layer. The whole process was 
represented well by PM2.5 estimates from ABI AOD, although the esti-
mates from ABI AOD have large underestimates at the peak. However, 
due to the low temporal resolution, VIIRS AOD only shows as one data 
point in the time series plot. In the estimates from ABI AOD, two sizes 
of the spatial averaging areas were chosen, one is 27.5 km and another is 
10 km. During the time of the event, the two different spatial averaging 
areas have large differences. For example, at 23 UTC, the PM2.5 averaged 
over 27.5 km circle is about 75 µg/m3 and that over 10 km circle is about 
150 µg/m3. This indicates that the event has not only large temporal var-
iation but also large spatial variation and it is important to capture the 
spatial gradients accurately.

As of now, the USEPA National Ambient Air Quality Standard continues to be for a 24-h average (>35 µg/
m3) and an annual average (>15 µg/m3). Human exposure to PM2.5 varies during the day, especially when 
subdaily time scale variations in PM2.5 near the surface occurs due to changes in wind speed/direction, 
boundary layer growth, and short duration fires releasing smoke quickly into the atmosphere. NOAA will 
derive hourly surface PM2.5 from ABI and daily average PM2.5 values from VIIRS to meet user needs.

5. Discussion
There are previous works that use GWR technique to estimate PM2.5 using AOD, meteorological and land 
use variables. For example, Kloog et al. (2011) calibrate their regression model daily over the New England 
region; Hu et al. (2013) used GWR to estimate PM2.5 over the southeastern US; Ma et al. (2014) used GWR 
to estimate PM2.5 over China. Hu et al. (2013) and Kloog et al. (2011) studies focus only on a small region 
and only investigate a small data range of PM2.5 below 50 µg/m3. It should be noted that when applying the 
GWR algorithm across the CONUS covering a very large area, the dynamic range of PM2.5 values is very 
large; especially for fire events when smoke concentrations near the source regions can reach between 500 
and 1,000 µg/m3. As more and more wildfire and smoke events occur over the western US, the monitoring 
of these events becomes more important. The users of our PM2.5 product are operational users, such as 
air quality forecasters and fire management officials, who use the estimated PM2.5 as a complement for 
ground and aircraft observations. Therefore, the nonrecurring extreme events are of more interest for this 
application than the recurring day-to-day patterns. The study of Ma et al. (2014) over China included a wide 
PM2.5 dynamic range and the cross validation in our work has a similar performance as theirs in terms of 
R2, which is close to 0.6 for daily PM2.5 estimates. In addition, their PM2.5 estimates also have larger nega-
tive biases when PM2.5 is higher.

There are also other methods such as machine learning algorithms to estimate PM2.5 from AOD and other 
ancillary parameters (e.g. Di et al., 2016, 2019). However, such methods also focus on case studies with 
lower PM2.5 values, because the training data for high PM2.5 are scarce. For example, Di et al. (2016) found 
the performance for the PM2.5 estimates is lower when PM2.5 is larger than 70 µg/m3 and therefore they 
restrict their estimates to lower PM2.5 values.

One may question as to why we did not use meteorological and land use variables as input in the GWR 
algorithm. There are two reasons: (1) observations of meteorological variables such as boundary layer 
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Figure 12. Time series of ABI AOD, Hourly PM2.5, VIIRS AOD, and daily 
PM2.5 at station USEPA number 380171004 on July 6, 2019. The station 
is located near Fargo, ND at 46.93°N, 96.85°W. ABI, Advanced Baseline 
Imager; AOD, aerosol optical depth; VIIRS, Visible Infrared Imaging 
Radiometer Suite. USEPA, United States Environmental Protection 
Agency.
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height are not available in near real time and we would have to rely on numerical weather prediction 
models for those variables when we apply the GWR algorithm in near real time. Our goal is for the PM2.5 
algorithm to be independent of any such reliance on forecasts, and (2) we wanted our GWR algorithm 
to be independent of any dependence on numerical model, these variables implicitly affect the resulting 
parameters, that is, a0ij and a1ij because they are calibrated dynamically for the given time and location 
of interest.

6. Conclusions
We developed a GWR algorithm to derive daily and hourly PM2.5 values from satellite-observed AODs. 
The GWR algorithm uses matchups of PM2.5 and AOD at stations to modify their regression relationships 
dynamically over the domain. The performance of the algorithm is demonstrated through a couple of case 
studies, three years of daily PM2.5 estimates from VIIRS AOD and five months of hourly PM2.5 estimates 
from ABI AOD. The GWR algorithm work demonstrated improved correlation, bias and RMSE compared 
against the results from van Donkelaar's algorithm which is the current algorithm at NOAA. For the GWR 
algorithm, the mean bias improved from 1.87 to 0.09 µg/m3, RMSE improves from 12.60 to 5.66 µg/m3 and 
R2 improves from 0.26 to 0.59. The PM2.5 estimates from the GWR algorithm has a slope of 0.87 versus 
ground measurements, while for van Donkelaar's algorithm, the slope is 1.98. For hourly PM2.5 observa-
tions, the R2 between the estimated and measurements is 0.44, the mean bias is 0.04 µg/m3, and the RMSE 
is 4.53 µg/m3. As a comparison, the PM2.5 estimates from the van Donkelaar's algorithm have an R2 of 0.09, 
a bias of 1.02 µg/m3, and an RMSE is 11.02 µg/m3. Over Taiwan, similar improvements are observed com-
paring the results from GWR and those from simple linear regression.

The VIIRS and ABI AODs used in the GWR algorithm are highly accurate with close to zero bias and 
0.10 or less RMSE. The cloud contamination in the AOD retrievals is minimum as the AOD algorithm 
has a very conservative cloud screening Due to this, there are many missing AOD retrievals when smoke 
is thick because the cloud mask tests identify thick smoke plumes as clouds or when derived AODs are 
greater than 5.0, the algorithm assigns an “out of range” flag to the derived AOD. This is not helpful for 
air quality applications because during episodic events of dust storms and smoke from fires, AODs can 
often be as high as seven (Shi, et al., 2019). NOAA aerosol algorithm team is working toward enhancing 
the algorithm to minimize some of these data artifacts. Owing to high accuracy of VIIRS AOD retrievals 
including bright desert surfaces, the GWR algorithm can be applied globally without any loss in spatial 
coverage. It should be noted, however, that large swaths of the globe do not have in situ observations of 
PM2.5 and relying on interpolation may lead to large errors. The density of ground stations for which 
near real time PM2.5 data are routinely available at OpenAQ (https://openaq.org/; accessed October 26, 
2020) is very high in the US, Asia, and western Europe. The methodology reported here can be applied 
to these regions of the globe. For other regions, the climatological regression parameters between AOD 
and PM2.5 have to be used until investments are made to introduce ground observations to most parts 
of the globe.

Seasonal PM2.5 estimated from VIIRS AOD over CONUS shows higher PM2.5 in summer and fall than the 
other two seasons in 2015–2017 period. The fire and smoke in the western US and western Canada contrib-
ute the most to the PM2.5 in summer and fall and therefore incurred higher PM2.5 in the west than in the 
east.

The performance of the GWR algorithm for cases where PM2.5 concentrations are very high (“Very Un-
healthy”) suffers because of lack of data to train the model. The bias is high (∼−40 µg/m3) and RMSE is also 
large (∼75 µg/m3). We showed that in addition to spatial sampling (the way AODs around a ground PM2.5 
station are averaged), temporal sampling (mid-afternoon observation of VIIRS AOD may not represent the 
daily average PM2.5 when there is a significant diurnal variation) can lead to the GWR algorithm not per-
forming well for high PM2.5 conditions. This is not a weakness of the algorithm but it is with the inputs 
that go into the GWR algorithm. Similarly, AOD algorithm often ignores high AODs by tagging them out of 
range when AODs are greater than five which leads to many pixels in a 27.5 km circle around ground PM2.5 
station with no retrievals. Therefore, the average AOD computed and given as input to GWR algorithm is 
not a true representative of the actual mean AOD.
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Data Availability Statement
ABI AOD can be downloaded at NOAA CLASS (https://www.avl.class.noaa.gov/saa/products/search?s-
ub_id=0&datatype_family=GRABIPRD&submit.x=26&submit.y=3; select “ABI L2+ Product Data [Select 
Product Type],” “Aerosol Optical Depth,” “CONUS,” and “G16” with time period August 6, 2018–December 
31, 2018). All the other data used in the study are available at https://zenodo.org/record/4420335.
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